Speaker Clustering by Iteratively Finding Discriminative Feature Space and Cluster Labels

نویسندگان

  • Sungrack Yun
  • Hye Jin Jang
  • Taesu Kim
چکیده

This paper presents a speaker clustering framework by iteratively performing two stages: a discriminative feature space is obtained given a cluster label set, and the cluster label set is updated using a clustering algorithm given the feature space. In the iterations of two stages, the cluster labels may be different from the true labels, and thus the obtained feature space based on the labels may be inaccurately discriminated. However, by iteratively performing above two stages, more accurate cluster labels and more discriminative feature space can be obtained, and finally they are converged. In this research, the linear discriminant analysis is used for discriminating the ivector feature space, and the variational Bayesian expectationmaximization on Gaussian mixture model is used for clustering the i-vectors. Our iterative clustering framework was evaluated using the database of keyword utterances and compared with the recently-published approaches. In all experiments, the results show that our framework outperforms the other approaches and converges in a few iterations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spherical Discriminant Analysis in Semi-supervised Speaker Clustering

Semi-supervised speaker clustering refers to the use of our prior knowledge of speakers in general to assist the unsupervised speaker clustering process. In the form of an independent training set, the prior knowledge helps us learn a speaker-discriminative feature transformation, a universal speaker prior model, and a discriminative speaker subspace, or equivalently a speaker-discriminative di...

متن کامل

Learning essential speaker sub-space using hetero-associative neural networks for speaker clustering

In this paper, we present a novel approach to speaker clustering involving the use of hetero-associative neural network (HANN) to compute very low dimensional speaker discriminatory features (in our case 1-dimensional) in a data-driven manner. A HANN trained to map input feature space onto speaker labels through a bottle-neck hidden layer is expected to learn very low dimensional feature subspa...

متن کامل

Spectral clustering and discriminant analysis for unsupervised feature selection

In this paper, we propose a novel method for unsupervised feature selection, which utilizes spectral clustering and discriminant analysis to learn the cluster labels of data. During the learning of cluster labels, feature selection is performed simultaneously. By imposing row sparsity on the transformation matrix, the proposed method optimizes for selecting the most discriminative features whic...

متن کامل

Discriminative Clustering via Generative Feature Mapping

Existing clustering methods can be roughly classified into two categories: generative and discriminative approaches. Generative clustering aims to explain the data and thus is adaptive to the underlying data distribution; discriminative clustering, on the other hand, emphasizes on finding partition boundaries. In this paper, we take the advantages of both models by coupling the two paradigms th...

متن کامل

Unsupervised Discriminative Training of PLDA for Domain Adaptation in Speaker Verification

This paper presents, for the first time, unsupervised discriminative training of probabilistic linear discriminant analysis (unsupervised DT-PLDA). While discriminative training avoids the problem of generative training based on probabilistic model assumptions that often do not agree with actual data, it has been difficult to apply it to unsupervised scenarios because it can fit data with almos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017